

Reminder of biology Major steps in microarray analysis Microarray preparation design, clone/probe selection RNA extraction, hybridization on chip Scanning, data extraction from image "Low-level" Quality Control Summarization of per-chip information (one number per feature) "High-level" analysis High-throughput RNA-level technologies Microarrays Affymetrix Chips SAGE MPSS

Expression analysis Low throughput Northern blot Differential display Quantitative PCR High throughput o DNA arrays / Chips Spotted arrays (Stanford arrays) Affymetrix (photolithography inspired)Oligo-arrays (Agilent, NimbleGen) Serial Analysis of Gene Expression (SAGE) RNASeq

What are DNA Microarrays?

Microarray analysis is a technology that allows scientists to simultaneously detect thousands of genes in a small sample and to analyze the expression of those genes.

Microarrays are simply ordered sets of DNA molecules of known sequence. Usually rectangular shaped, they can consist of a few hundred to hundreds of thousands of sets. Each individual sequence goes on the array at precisely defined location.

Potential application domains

- Identification of complex genetic diseases
- Drug discovery and toxicology studies
- Mutation/polymorphism detection (SNP's)
 Pathogen analysis
- Differing expression of genes over time, between tissues, and disease
- Preventive medicine
- Specific genotype (population) targeted drugs More targeted drug treatments AIDS
- Genetic testing and privacy

The big revolution here is in the "micro" term. New slides will contain a survey of the human genome on a 2 cm² chip! The use of this large-scale method tends to create phenomenal amounts of data, that have then to be analyzed, processed and stored. This is a job for... Bioinformatics!

Question addressed by microarrays

- What are the differences (in gene expression) between two cell lines ?
- What is the difference between knock-out and wild-type mice?
- What is the difference between a tumor and a healthy tissue?
- Are there different tumor types ?
- Key concept: Compare gene expression in two (or more) cell/
 - Gene expression assessed by measuring the number of RNA transcripts.
 - No absolute measurement.

SIB | Swiss Institute of Bioinformatics - LF 11.2010

THE EXPERIMENT : making the chip

- 1- Designing the chip: choosing genes of interest for the experiment and/or select the samples
- Selection of sequences that represent the investigated genes.
- Finding sequences, usually in the EST database.
- Problems : sequencing errors, alternative splicing, chimeric sequences, contamination...

Clone/probe selection

- General

 - Not too short (sensitivity, selectivity) Not too long (viscosity, surface properties)
 - Not too heterogeneous (robustness)
- Degree of importance depends on method Single strand methods (Oligos, ss-cDNA)

 - Orientation must be known
 - ss-cDNA methods are not perfect
 - ds-cDNA methods don't care

A checklist

- Pick a gene
- Try to get a complete cDNA sequence
- Verify sequence architecture (e.g. cross-species comparison)
- Mask repetitive elements (and vector!)
- If possible, discard 3'-UTR beyond first polyA signal
- Look for alternative splice events
- Use remaining region of interest for similarity searches
 Mask regions that could cross-hybridize
- Use the remaining region for probe amplification or EST selection
- When working with ESTs, use sequence-verified clones

THE EXPERIMENT : making the chip

2- Spotting the sequences on the substrate

- Substrate : usually glass, but also nylon membranes, plastic, ceramic...
- Sequences : cDNA (500-5000 nucleotides), oligonucleotides (20~80-mer oligos), genomic DNA ($\sim\!50'$ 000 bases)
- Printing methods : microspotting, ink-jetting or in-situ printing, photolithography

Microarrays: the making of Microspotting and ink-jetting

Comparison of techniques EST counts Method Microarrays Sampling Analog Digital Digital Molecules sampled Low-medium Medium-high High Duplicates Required Desirable Not required High High Variable Easy

Alternative to SAGE: generate 13-nt tags from a large (>10⁵) sample of cDNAs Longer tags means higher specificity Solid-state technology gives high throughput Cost comparable to SAGE, but much larger number of tags obtained

Massively Parallel Signature Sequencing

SIB Swiss Institute of Bioinformatics - LF 11.2010

"Megacloning" Generate cDNA population where each molecule is attached to a different tag Amplify this population Attach to beads carrying anti-tags Purify beads that have captured cDNAs Massively parallel sequencing Use cycles of Rx enzyme cleavage, ligation and hybridization to read blocks of 4 nucleotides

"Words" for tag construction TTAC, AATC, TACT, ATCA, ACAT, TCTA, CTTT, and CAAA No restriction sites Isothermal denaturation Large AT_m for match/mismatch pairs Large total repertoire (8⁸ or 16,777,216) Example: 5'-TACT.TTAC.ACAT.ATCA.CTTT.CTTT.CAAA.AATC-3' 3'-ATGA.AATG.TGTA.TAGT.GAAA.GAAA.GTTT.TTAG-5'

Problems with SAGE/MPSS data

- Sequencing errors in the libraries
- Sequencing errors in the ESTs used to derive the signatures
- Incomplete digestion by Rx enzymes
- Ambiguities in signature to gene maps

Swiss Institute of Bioinformatics - LF 11.2010

Unreliable sequences

- 1% error rate in sequence means that there is 10% chance a signature is wrong in either library or EST
- Correction in libraries by elimination of low-frequency signatures (singlets) and by merging of neighbours of abundant tags
- Correction in ESTs and detection of SNPs by aligning to genome data

SIB

Swiss Institute of Bioinformatics - LF 11.2010

Getting signatures from the transcriptome (NCBI)

- Separate out individual species (e.g., human) sequences from GenBank submission records.
- Assign a SAGE tag to each sequence, by:
 - assigning sequence orientation through a combination of identification poly-adenylation signal (ATTAAA or AATAAA), poly-adenylation tail, and sequence label, and
 - extracting a 10 base tag 3'-adjacent to the 3'-most NIaIII site (CATG).
- Use information from NCBI's UniGene project, assigning an UniGene identifier to each species sequence with a SAGE

Swiss Institute of Bioinformatics - LF 11.20

The problem of poly(A)

- There is one chance in 256 that the first four nt upstream of the poly(A) are CATG
- There is one chance in 25 that CATG is found within 10 nt of the poly(A)
- Therefore, tags containing multiple A's at their 3' end may not be mapped correctly
- In fact, tags consisting of only A's are found very commonly in SAGE/MPSS libraries

Swiss Institute of Bioinformatics - LF 11.2010

Multiple tags per gene and genes per signature

- Many (probably most) genes have more than one polyadenylation site, and may be associated with multiple UniGene clusters
- About 1% of the tags originate from partially cleaved cDNA (i.e. from the 2nd restriction site)
- The same tag can appear in more than one mRNA, and have a different probability of being generated from each

Swiss Institute of Bioinformatics - LF 11.2010

Getting signatures from the genome

- Extract poly(A) proximal 3' tags from EST trace files and map to the genome
- Map exons on the genome from the transcriptome
- Follow the exons from the 3' tag to find NIaIII site and SAGE tag
- This identifies 120' 000 reliable tags on the human genome

Swiss Institute of Bioinformatics - LF 11.2010

[E	fficiency of t	tag ann	otation					
-			HB4a	HCT-116	Combined				
		Total tags	17354	24065	27965				
		Contaminants a	160	264	276				
		Match virtual transcripts ^b	12109 (70%)	14699 (62%)	17992 (65%)				
		Match NCBI models ^c	9476 (55%)	10883 (46%)	12326 (44%)				
		Match Ensembl transcripts	8561 (50%)	9842 (41%)	11105 (40%)				
	a)	Contaminants include mitochondria	and ribosomal RNAs	and repetitive elements	š.				
	b)	Percentages are calculated relative to total tags minus contaminants.							
	c)	Combination of experimental and predicted transcripts (NM and XM identifiers) in RefSeq (November 8, 2002).							
SIB	Swiss	Institute of Bioinformatics - LF 11.2010							

