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AA Codes

Gly

Ser

Pro

Val

Cys

Len

Il

G

A"

AA Residue
Composition

C,H,NO

C,H;NO

C,H,NO,

C.H,NO

C{H,NO

C,H,NO,

C,H;NOS

CH, ,NO

CH, NO

CHN0,

Avg

Mono.

57.021464 57.05

71.037114 71.08

87.032029 87.08

97.052764 97.12

99.068414 99.07

101.04768 101.1

103.00919 103.1

11308406 113.2

113.08406 113.2

11404293 114.1

Structure

HHCH,CO-

CH,
1
HH-CHCO-

CH-OH
WH-CHCO-

CH,

HE GE,
-H—CHAZO-
CH, CH,

%

-MH-CH-Z0-

OH CH,

Th

WH-CHCO-

H,o-5H
1
HH-CH-CO-

CH,
CH,CH-CH,
HHLH-CO

CH,
ué -CH; CH,
NHCHCO-

0
ch,-U s,
-NH-CH.CO-

[ = = S e

=0oc

AA Codes
Asp D
Gh Q
Lvs K
Gl | E
Met | M
His H
Phe F
Arg | R
Twr | Y
Trp W

AA Residue
Composition

C,HNO,
CHgN,O,

CeH,N,0

C.H,NO,

CH,NOS

CH.N,O

CHNO

CeH,N,O

CDHDI{DE

CIIHIDNED

Mono. | Avg

115.02694 115.1

128 05858 128.1

128.09496 128.2

12904259 1291

131.04048 131.2

137.05891 137.1

14706841 147.2

15610111 156.2

163.06333 163.2

186.07931 186.2
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Primary Structure
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Prima anhalysis

» Signal Peptide
* Hydrophobicity analysis

* Transmembrane domains
* Subcellular location

* Motif, prints, blocks
* Phylogeny




Protocol...

* Sequence

e Databases: 11«1/, Swissprot, Pir, etc

e Experimental

e Signal peptide

e Molecular weight, isoelectric point

e Other Parameters

e potential cleavage sites



http://www.ncbi.nlm.nih.gov/
http://www.cbs.dtu.dk/services/SignalP/
http://web.expasy.org/compute_pi/
http://web.expasy.org/protparam/
http://web.expasy.org/peptide_cutter/

! !ydrophobicity

e M
e TM2

1;

e TM
e Subcellular location
Sl2

£

C/)
N


http://web.expasy.org/protscale/
http://www.ch.embnet.org/software/TMPRED_form.html
http://www.cbs.dtu.dk/services/TMHMM/
http://www.sbc.su.se/~miklos/DAS/
http://www.enzim.hu/hmmtop/html/submit.html
http://wolfpsort.org/
http://www.cbs.dtu.dk/services/TargetP/

_ Protein substitution matrices

Protein substitution matrices are significantly more
complex than DNA scoring matrices.

Proteins are composed of twenty amino acids, and
physico-chemical properties of individual amino acids vary
considerably.

A protein substitution matrix can be based on any property
of amino acids: size, polarity, charge, hydrophobicity.

In practice the most important are evolutionary
substitution matrices.
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Matrices

PAM (Point accepted mutation)

e PAM120, PAM250 (Number of substitutions/100
residues)

BLOSUM (Blocks substitution matrix)
e Blosum 62, Blosumso (identity)

Proteins related
BLOSUM newest
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AMINOACIDO ORIGINAL

L K M F P § T W Y V
n u u

G H 1

E

A R ND C Q

6

3
3
4
5
2

A (Ala)
R (Arg)
N (Asn)

17
4
4

11

D (Asp)
C (Cys)
Q (GIn)
E (Glu)

5

3

5
12

10 10

5
5

G (Gly)
H (His)

2

3
6
6

I (Ile)

L (Leu)

13
2

15 34 4 20

5

4
18

4 24 9

5

10

K (Lys)
M (Met)

F (Phe)

1

20

2

5

7
9
8
0

P (Pro)

S (Ser)

5

T (Thr)

W (Trp)
Y (Tyr)
V (Val)

31

1

17

10

10

15

4

7
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BLOSUM &80 BLOSUM 62 BLOSUM 45
FAM 1 PAM 120 PAM 250

Less divergent =

> More divergent




pviotifs?? .

Some family proteins conserve a short sequence and it’s related to
function

Not 100% similarity
Phylogenetic analysis

Conservation

Related to function ‘ Prediction
Remote
Conserved Homologous
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Motif databases

Profiles
*Blocks

Prints

ALRDFATHDDF
SMTAEATHDST
ECDQAATHEAS

|

A-T-H-[DE]

[Ala or Cys]-any-Val-any-any-any-
any-{any but Glu or Asp}
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http://ca.expasy.org/tools/scanprosite/

http://myhits.isb-sib.ch/cqgi-bin/motif scan

http://smart.embl-heidelberqg.de/index2.cqi



http://ca.expasy.org/tools/scanprosite/
http://myhits.isb-sib.ch/cgi-bin/motif_scan
http://myhits.isb-sib.ch/cgi-bin/motif_scan
http://myhits.isb-sib.ch/cgi-bin/motif_scan
http://myhits.isb-sib.ch/cgi-bin/motif_scan
http://myhits.isb-sib.ch/cgi-bin/motif_scan
http://smart.embl-heidelberg.de/index2.cgi
http://smart.embl-heidelberg.de/index2.cgi
http://smart.embl-heidelberg.de/index2.cgi




Protein structure - bonding

5 bonds or forces determine structure
e Peptide bond
e Hydrogen bond
e Disulfide bond
e Tonic bond
e Hydrophobic force



Secondary protein structure

Peptide chains fold into secondary structures:
* o - helix
* B - pleated sheet
e Random coil



; S ) (b)

/ﬂape maintained by E/Q\l \/ R

hydrogen bonds NN

between C=0 and N-

H groups in

backbone

R groups directed

outward from coil

o - helix

From: Elliott, WH. Elliott, DC. (1997) Biochemistry and Molecular
Biology. Oxford: Oxford University Press. p28
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H
Structure maintained N’CH" i” h i\ &LE‘ o
by hydrogen bonds (2)

betweep C=0 and N-H M,EJ-L t}{@w_ﬁ& E)\‘

groups in backbone

R groups directed s [t L

above and below ] :

backbone I | |
(b)

|
- m—kﬁ»\

Part ofantiparallel p sheet

B - pleated sheet

From: Elliott, WH. Elliott, DC. (1997) Biochemistry and Molecular
Biology. Oxford: Oxford University Press. p29



= Not really random
structure, just non-
repeating
e ‘Random’ coil has fixed
structure within a given
protein

e Commonly called
‘connecting loop region’

e Structure determined by
bonding of side chains
(i.e. not necessarily
hydrogen bonds)

From: Elliott, WH. Elliott, DC. (1997)
Biochemistry and Molecular Biology. Oxford:
Oxford University Press. p27

Random coil
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Secondary Structure Predictio

Gliven a protein sequence aa....dy, secondgry structure
prediction aims at defining the state of each amino acid ai
as being either H (helix), E (extended=strand), or O (other)
(Some methods have 4 states: H, E, T for turns, and O for
other).

The quality of secondary structure prediction is measured
with a “3-state accuracy” score, or Q,. Q, is the percent of
residues that match “reality” (X-ray structure).
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= uality of Secondary Structure Prediction

Determine Secondary Structure positions in known protein
structures using DSSP or STRIDE:

1. Kabsch and Sander. Dictionary of Secondary Structure in Proteins: pattern
recognition of hydrogen-bonded and geometrical features.
Biopolymer 22: 2571-2637 (1983) (DSSP)

2. Frischman and Argos. Knowledge-based secondary structure assignments.
Proteins, 23:566-571 (1995) (STRIDE)




Limitations of Q
ALHEASGPSVILFGSDV&'VPPASNAEQAK Amino acid sequence

hhhhhoooo ofo]o) ooooohhhhh Actual Secondary Structure

ohhhoooo 00000 ooohhhhhh

(useful prediction)

hhhhhoooohhhhooohhhooooohhhhh
(terrible prediction)
@ Q3 for random prediction is 33%

widh Secondary structure assignment in real proteins is uncertain to about 10%;
Therefore, a “perfect” prediction would have Q3=90%.
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methods for SECOndary Structure
Prediction

e Chou and Fasman

(Chou and Fasman. Prediction of protein conformation.
Biochemistry, 13: 211-245, 1974)

* GOR

(Garnier, Osguthorpe and Robson. Analysis of the accuracy
and implications of simple methods for predicting the
secondary structure of globular proteins. ]J. Mol. Biol., 120:97-120,

1978)
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Chou and Fasman

e Start by computing amino acids propensities
to belong to a given type of secondary
structure:

P(i/Helix)  P(i/Beta)  P(i/Turn)
P(1) P(1) P(1)

Propensities > 1 mean that the residue type | is likely to be found in the
Corresponding secondary structure type.



Amino Acid a-Helix B-Sheet Turn

Favors
o-Helix

Favors
B-strand




P Chouand-Fasman="— s

Predicting helices:
- find nucleation site: 4 out of 6 contiguous residues with P(o)>1
- extension: extend helix in both directions until a set of 4 contiguous
residues has an average P(a) < 1 (breaker)
- if average P(o) over whole region is >1, it is predicted to be helical

Predicting strands:
- find nucleation site: 3 out of 5 contiguous residues with P(3)>1
- extension: extend strand in both directions until a set of 4 contiguous
residues has an average P(3) < 1 (breaker)
- if average P([3) over whole region is >1, it is predicted to be a strand



r — Chouand-Fasman="—=

f(i) f(i+1) f(i+2) f(i+3)

Position-specific parameters Ala 0.060 0.076 0.035 0.058

for turn: Arg 0.070 0.106 0.099 0.085

Each position has distinct Asp 0.147 0.11010.179/0.081

: . Asn 0.161 0.083|0.191|0.091

amino acid preferences. :

Cys 0.149 0.050 0.11?|0.12q

- Glu 0.056 0.060 0.077 0.064
Examples: Gln 0.074 0.098 0.037

Gly 0.102 0.085(0.190/0.152

-At position 2, Pro is highly His 0.140 0.047 O©. 0.054

preferred; Trp is disfavored Ile 0.043 0.034 0.013 0.056

Leu 0.061 0.025 0.036 0.070

-At position 3, Asp, Asn and Gly Lys 0.055 0.115 0.072 0.095

are preferred Met 0.068 0.082 0.014 0.055

Phe 0.0590.065 0.065

ot Pro 0.102|0.301/0.034 0.068

= Ser 0.120 0.139 0.125 0.106

Rrelel’s Thr 0.086 0,108 0.065 0,079

Trp 0.077 0.013)0.064 (0.167

Tyr 0.082 0.065 0.114 0.125

val 0.062 0.048 0.028 0.053



Predicting turns:
- for each tetrapeptide starting at residue i, compute:
- P, (average propensity over all 4 residues)
- F = f(i)*f(i+21)*f(i+2) *f(i+3)
- if P;,,, > Pacand Py, > PP and P, > 1 and F>0.000075
tetrapeptide is considered a turn.

Chou and Fasman prediction:

http://fasta.bioch.virginia.edu/fasta_www/chofas.htm



— The-GOR'mMethod e

Position-dependent propensities for helix, sheet or turn is calculated for each
amino acid. For each position j in the sequence, eight residues on either side are
considered.

A helix propensity table contains information about propensity for residues at 17
positions when the conformation of residue j is helical. The helix propensity tables
have 20 x 17 entries.

Build similar tables for strands and turns.

GOR simplification:
The predicted state of AAj is calculated as the sum of the position-dependent

propensities of all residues around AA;.

GOR can be used at : (current version is GOR V)


http://abs.cit.nih.gov/gor/

Accuracy

® Both Chou and Fasman and GOR have been
assessed and their accuracy is estimated to be
(Q3=60-65%.

(initially, higher scores were reported, but the
experiments set to measure Q3 were flawed, as the
test cases included proteins used to derive the
propensities!)



Neural networks

The most successful methods for predicting secondary structure
are based on neural networks. The overall idea is that neural
networks can be trained to recognize amino acid patterns in
known secondary structure units, and to use these patterns to
distinguish between the different types of secondary structure.

Neural networks classify “input vectors” or “examples” into
categories (2 or more).

They are loosely based on biological neurons.



Neural networks

The most successful methods for predicting secondary structure
are based on neural networks. The overall idea is that neural
networks can be trained to recognize amino acid patterns in
known secondary structure units, and to use these patterns to
distinguish between the different types of secondary structure.

Neural networks classify “input vectors” or “examples” into
categories (2 or more).

They are loosely based on biological neurons.
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A complete neural network
is a set of perceptrons
interconnected such that
the outputs of some units
becomes the inputs of other
units. Many topologies are
possible!

Neural networks are trained just like perceptron, by minimizing an error function:

Ndata

[ Z(NN(X‘)—t(X‘))Z



Neural networks and Secondary Structure
prediction

Experience from Chou and Fasman and GOR has
shown that:

e In predicting the conformation of a residue, it is
important to consider a window around it.

e Helices and strands occur in stretches
e It is important to consider multiple sequences



PHD: Secondary structure prediction using N

E)iﬂph]rsics: Rost and Sander

Proc. Natl. Acad. Sci. USA 90 (1993) 7559 ]

Protein|Alignmenty profile table
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G |[IGNGG |4.... 1.... .o o
'vl vlvv L " % 5 & 5 ¢ T s & = s = =z = =
N |[EP KK 1. 1.12
P |[PPPP . T
G |GGGG |5..
T ITTTT |..... .5.
D |[EKS A | R O s
F |[FFFF . 5.




-Available servers:

- JPRED : http://www.compbio.dundee.ac.uk/~www-jpred/

-PHD: http://cubic.bioc.columbia.edu/predictprotein/

- PSIPRED: http://bioinf.cs.ucl.ac.uk/psipred/

- NNPREDICT: http://www.cmpharm.ucsf.edu/~nomi/nnpredict.html

- Chou and Fassman: http://fasta.bioch.virginia.edu/fasta www/chofas.htm

-Interesting paper:

- Rost and Eyrich. EVA: Large-scale analysis of secondary structure
prediction. Proteins 5:192-199 (2001)


http://www.compbio.dundee.ac.uk/~www-jpred/
http://www.compbio.dundee.ac.uk/~www-jpred/
http://www.compbio.dundee.ac.uk/~www-jpred/
http://cubic.bioc.columbia.edu/predictprotein/
http://bioinf.cs.ucl.ac.uk/psipred/
http://www.cmpharm.ucsf.edu/~nomi/nnpredict.html
http://fasta.bioch.virginia.edu/fasta_www/chofas.htm

Performances — __—
(monitored at CASP)

i vear Y o8 o
Targets P
Rost
CASP1 1994 6 63 and
Sander
Rost

CASP2 1996 24 70
CASP3 1998 18 75 Jones

CASP4 2000 28 80 Jones




Tertiary protein structure

Secondary structures fold and pack together to

form tertiary structure
e Usually globular shape

Tertiary structure stabilised by bonds between R

groups (i.e. sidechains)



[]'5 allowing to be broken
AT 7N Ho " and reformed easily
§<— Hydrogen ® AHOWS StI'UCtural
= bond
I:.:] 5 change
T A  produces ‘functional’
. H I'Ili:I molecules

Tertiary structure - H bond



/ 00" 00"~

| !
+H;N—{|:H +H3N—§:H

P
SiH H!S
e Covalent bond Cysteine Coteine
between sulfur atoms
on two cysteine amino 02
x )
acids
coo- coo-
*HsN—CH  *HsN—CH
| ] | + H';O;r .
(2 (2
S S
Cystine

Tertiary structure - disulfide bond

From: Elliott, WH. Elliott, DC. (1997)
Biochemistry and Molecular Biology. Oxford:
Oxford University Press. p32



0
,,//
T TON o seltbridge
O >~
Ions on R groups e —cH,
. NH; s oo e O~ 7
form salt bridges Salt bridge
through ionic
bonds From: Summerlin, LR. (1981) Chemistry for the Life Sciences. New

York: Random House, p459

Tertiary structure - ionic bond



" (Close attraction of non-polar F ,
: | / Hydrophobic region

groups through dispersion

forces

//
o

e i

Very weak but collective
interactions over large area

stabilise structure

Repel polar and charged

molecules/particles

Tertiary structure - hydrophobic
forces

Bettelheim & March (1990) Introduction to Organic & Biochemistry
(International Edition) Philadelphia: Saunders College Publishing,
p302



~ Methods for structure prediction

Analysis of Primary Structure
Secondary structure prediction
Homology modelling
e Building a 3D model on the basis of similar sequences

Threading

e Threading the sequence on all known protein structures,
and testing the consistency

ab initio prediction of tertiary structure

e For proteins of normal size, it is almost impossible to
predict structures ab initio.

e Some results have been obtained in the prediction of
oligopeptide structures.



range of sequence  key limiting factor
similarity in % in model buﬂdlng
identical residues by homology

100%
SPEED
75%
QUALITY
50%
ALIGNMENT
23 %
DETECTION
0%

Figure 1. The main limiting steps for model building by homology as function of
the percentage sequence identity between the structure and the model.
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Basic concept

In a given protein 3D structure is a more conserved
characteristic than sequence

e Some aminoacids are “equivalent” to each other

e Evolutionary pressure allows only aminoacids
substitutions that keep 3D structure largely unaltered

Two proteins of “similar” sequences must have the
“same” 3D structure



/
Possible scenarios

1. Homology can be recognized using sequence comparison tools or
protein family databases (blast, clustal, pfam,...).

Structural and functional predictions are feasible

2. Homology exist but cannot be recognized easily (psi-blast, threading)

Low resolution fold predictions are possible. No functional
information.

3. No homology

1D predictions. Sequence motifs. Limited functional prediction. Ab-
initio prediction
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ab-initio prediction

Prediction from sequence using first principles

AVVTW..GTTWVR -
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Ab-initio prediction

“In theory”, we should be able to build native
structures from first principles using sequence
information and molecular dynamics simulations:
“Ab-initio prediction of structure”

e Simulaciones de 1 us de “folding” de una proteina modelo (Duan-
Kollman: Science, 277, 1793, 1998).

e Simulaciones de folding reversible de péptidos (20-200 ns) (Daura
et al., Angew. Chem., 38, 236, 1999).

e Simulaciones distribuidas de folding de Villin (36-residues)
(Zagrovic et al., JMB, 323, 927, 2002).
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... the bad news ...

[t is not possible to span simulations to the “seconds
range

by

Simulations are limited to small systems and fast
folding/unfolding events in known structures

e steered dynamics
e biased molecular dynamics

Simplified systems



/ A
typical shortcuts

Reduce conformational space
* 1,2 atoms per residue

e fixed lattices

Statistic force-fields obtained from known structures
e Average distances between residues
e Interactions

Use building blocks: 3-9 residues from PDB structures



Results from ab-initio

Average error 5 A - 10 A

Function cannot be
predicted

Long simulations

Some protein from E.coli
predicted at 7.6 A
(CASP3, H.Scheraga)




comparative modelling

The most efficient way to predict protein structure is
to compare with known 3D structures



Threading

Unknown sequence is “folded” in a number of known
structures

Scoring functions evaluate the fitting between
sequence and structure according to statistical
functions and sequence comparison
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ATTWV....PRKSCT
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SELECTED HIT



PAPTWV....PRKSCT Sequ
~ HHHHH. .. .CCBBBB tru
eeebb. . . .eeebeb Pred. accesibility

OGIV.. AITW ... ATTVL...FFRK
BBBB. ¢CHH ... HHHB.....CBCB
EEBE....BBEB ... BBEBB....EBBE





http://toolkit.tuebingen.mpg.de/hhpred

Comparative modelling
Good for homology >30%

Accurancy is very high for homology > 60%

Reminder
e The model must be USEFUL
e Only the “interesting” regions of the protein need to be

modelled


http://swissmodel.expasy.org/

/' —

Expected accurancy

Strongly dependent on the quality of the sequence
alignment

Strongly dependent on the identity with “template”
structures. Very good structures if identity > 60-70%.

Quality of the model is better in the backbone than
side chains

Quality of the model is better in conserved regions



/ A
Quality test

No energy differences between a correct or wrong
model

The structure must by “chemically correct” to use it in
quantitative predictions



Psi{degrees)

pdb2115
[ I

o 45
Phi {degrees)



http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/Generate.html
http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/Generate.html
http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/Generate.html

