Pairwise sequence comparison

Frédérique Galisson

January 9, 2002

The topic that will be addressed here concerns the comparison between
two biological sequences. The first part covers some algorithmic methods
allowing to estimate (locate and quantify) the similarity between any two
sequences, particularly through the obtention of an alignment of the se-
quences. The second part focuses on models used to measure the similarity
between monomers of biological macromolecules.

1 Sequence comparison methods

1.1 Diagonals method

This method, often called “dot-plot matrix” was first introduced by Gibbs
and Mcintyre in 1970 [1], who used it for comparing cytochrome C sequences.

Its graphical version is most known: one sequence is represented on the
horizontal axis, the other one on the vertical axis. If the residue at position
z in the first sequence is identical to the y residue in the second sequence,
the position of coordinates (x,y) in the matrix is labelled with a dot (thus,
the “dot-plot” name). Regions of the two sequences sharing a high den-
sity of identical letters appear as diagonal fragments. This simple and fast
method offers a visual representation of the similar regions between the two
sequences. However, if one simply places a dot each time two positions of
the sequences are identical, the signal to noise ratio is generally quite low
because the background is very high: with proteins, the average probability
that two random positions are identical is 0.05, and with nucleic acids, it is
as high as 0.25.

One way to increase the stringency of the method is to use “word” (or “k-
tuple”, or “window”) matches instead of residue matches. For each position
x (or y) in a sequence, the word of size k for this position is defined as the
consecutive group of letters starting at position z (or y) and continuing for
a total of k letters. For each pair (z,y) of positions in the two sequences, a

dot is placed if and only if the words of size k starting at positions z and y in
respectively the first and the second sequence are identical. The selectivity
of the method increases with k. For example, with & = 2, in the case of
protein sequences, the probability of a dot occuring randomly is yet no more
than 0.0025 (1/400). On the other hand, this increase in selectivity comes
with a decrease in sensitivity: for example, if k = 2, if two proteins share a
similar region, with on average only one over two positions that are identical,
this similarity may escape detection.

A more flexible way for modulating the sensitivity to selectivity ratio
involves selecting both a size k for the sliding window and a threshold for
the comparison of words: a dot is placed at position (z,y) if and only if the
number of identical positions between the words starting at x in the first se-
quence and y in the second one is greater than or equal to the threshold. The
size of the sliding window or word, and the choosen value for the threshold
are two parameters allowing to modify the signal to noise ratio.

It is also possible to introduce here the notion of similarity between amino
acids, by refering to a scoring matrix (see section 2.1), and to set a threshold
such that one places a dot at the point (z,y) if and only if the similarity score
(taken from the scoring matrix) between amino acids at respective positions
z and y in the first and second sequences is greater than or equal to the
threshold. Of course, taking into account the similarities between individual
amino acids is also possible in combination with the use of a sliding window
of size k.

The graphical version described above, provides an approximate but
quick estimate of where and how much two sequences are similar. There
are also non-graphical versions of the basic method, like those used in the
first step of both the Fasta and Blast programs (see corresponding course).

The main limits of this method are:

e the difficulty in quantifying the similarity that is being observed;

e the difficulty in extending its use to the simultaneous comparison of
more than two sequences.

Moreover, it is difficult to manipulate the resulting representation from
such a comparison. So, for these reasons, the concept of alignment for com-
paring biological sequences has appeared, starting in the 70’s.

1.2 Alignments of sequences

When two sequences are very similar, it is possible to align them just by
eye, almost without any ambiguities. When the similarity decreases, and
particularly when it becomes necessary to introduce deletions or insertions
within one of the two sequences, the number of solutions one has to con-
sider becomes too large to handle manually. Computational methods have
been developed that allow the calculation of the best alignment between two
sequences, given some criteria one wants to optimize.

1.2.1 Global optimal alignment between two sequences

As in the preceeding section, we first ignore the question of how to score
a substitution between two amino acids, as well as how to penalize gaps,
and we consider the biological sequences simply as character strings, with no
biological meaning. The problem of calculating the best alignment between
two sequences reduces then to the optimization of a scoring function, whose
variables are the studied sequences. The scores associated with matches,
mismatches or gaps are the parameters of this function and constitute the
“scoring system”.

Some definitions

e 3 denotes the alphabet of the sequences. E.g. for nucleic acids, % =
{A4,C,G,T}

¥ denotes the set X U {—}, the symbol "—" representing a gap in one
or the other of the sequences at one position in the alignment.

e The concatenation of n symbols taken from the alphabet, and forming
the S string is denoted S = s189- -+ $p-

e The alignment between two symbols z and y is denoted (:?j)

rre:Tm
and 1179 - T

S§1892-*S8 .
° < ") denotes the alignment between sequences s183--- sy

e opt (515277 5n) denotes the optimal alignment of the two se-
— 172" Tm

quences $189 -+ Sy and r17ry - - Ty

Alignments without gaps

In the case of an alignment without gaps between two strings, these strings
must be of the same length, and there is only one possible alignment, that
is defined as the pairing of all the successive elements of the two strings
A = aiaz...ag and B = b1by...b;. We represent the alignment as a sequence
of pairs of letters:

A_ a1ag---aq . a1 a9 Qq
T\ bbby)\ by by b,

The score of the alignment is defined as:

q .
scoreA =Y score (Z: > (1)

1=1

from which one may derive the recursive formula:

scoreA = scoreA' + score (Zq) (2)
q

./4, — aj ag . a'q—l — aag--- a'q—l
by by by1 biby- - by 1

Having established these two equations will be useful below, in the case

with

of alignments with gaps.

Scores: similarity or distance

The score of an alignment, with or without gaps, may represent a measure
of the similarity between the sequences, or a measure of the distancew be-
tween them. The distance will vary inversely with the similarity between the
sequences.

Whatever z, y, and z, three elements taken from the alphabet, a distance
metrics verifies:

In the case of alignments without gaps, if one uses a score of 0 for the pairing
of two identical letters, and a score of 1 for the pairing of non identical
symbols, the global score is called the Hamming distance between the two
strings, and it represents the number of differences between these two aligned
strings.

Alignments with gaps

Let A = a1a2---a,, and B = biby--- by, two strings formed over the 3
alphabet, and of respective lengths m and n, with m < n. An alignment
between strings A and B, is a sequence of paired symbols:

(wea (@ (@) (&) (%) .
- ()= () (8) (8)~ () e

e @; and b; being two elements from ¥ = L U {-},

® a1ay - Qy = 414z ap and biby---b, = b_lb_g"'b_p (if one ignores
gaps, represented by “”),

e then necessarily, n <p<m-+mn

i

e in one pair (Z—_), both elements cannot be the symbol “—” at the
(2

same time.

As in the case of ungapped alignments (equation 1), the score of the
alignment is defined as the sum of the scores of every pair in the alignment:

p -
scoreA = Z score (%Z > (3)

i=1

If the set of scoring parameters is like this:

a; 0if a; = b_i,
) = 4
score(b;) { else 1, 4)
then, the score of the optimal alignment between the sequences (the one
whose score is the smallest) is called the minimum editing distance between
A and B, or Levensthein distance. This is the scoring system that will be
used for the rest of this section.

Searching the optimal alignment between A and B amounts then to look-
ing for the minimum among the scores of all the possible alignments between

A and B. Fortunately, it will be possible to avoid the obvious but expensive
method that would involve the computation of all these scores and com-
paring them. Let us consider this observation: any alignment of A and B
may end in three different manners, indeed the last pair of the alignment,

(Z’),maybeeither(%f) or (a:”> or (l; >,and:
() () -
bibg -+ bp—1 bn ’
A= (o Yo () () o
(e) (o)

This observation leads to two consequences :

e This gives us a means for calculating the total number of possible
alignments of A and B, f(m,n), which is equal to f(m —1,n —1) +
f(m—1,n) + f(m,n —1). It is possible to solve this recursion and
express f(m,n) as a function of m and n. For two sequences of length
1000, the number of possible alignments is on the order of 105%0 (for
comparison, the Avogadro number is on the order of 10?3, and the
estimated number of particles in the universe is on the order of 1080,
[2]). Even using a computer, it is not conceivable to calculate all these
alignments ([2]).

e The score of A can be written, as in the case of ungapped alignments
(equation 2) with a recursive formula:

scoreA = scoreA’ + score (pr) (5)
P

ith A = [@% -1) _ [& G Y. %1) 14
W (Biby - by 1 by by by,
the optimal alignment of A and B, then A’ is also an optimal align-

ment (rank p — 1) (This may be demonstrated using the “optimality
principle”, [2], [3]).

From the above observation, A’ may be either A’y = opt
—\ biby---bp g

a1az - am—1 ! aiaz - am
or Ay = opt , or A3 = opt ,
? p—(biby by) ’ p_(ble"'bn1>

6

a1ag - Gm—1)
)

and it follows that :

27

scoreA'| + score b
n

. am
score A = min{ scoreA's + score

scoreA’s + score (-)
\ bn
Comment: of course, if one were reasoning in terms of similarity instead
of distance, one would try to maximize the score, instead of minimize.
In an analogous way, each of the three A’ alignments may be obtained
from one of its three preceeding sub-alignments, and this is true at all ranks.
For any ¢ and j, both greater than 0, we have:

score opt__ (C;)ll:::ba.i—ll) + score (ZZ)
j— (]

score opt _ ((21 - ';i) =min score opt__ (bal ' b i) + score (b_)
1+ b; 100 bj1 y

score opt (alb”'abifl) + score (a_,- >
\ 1+ bj

(6)

Sic1j-1 | Si-1
Y
Sij-1 —= S
Figure 1: Si,j is the score of the optimal alignment between aj---a;

and by ---b;. The diagonal arrow represents the substitution of a; with by,
whereas horizontal and vertical arrows respectively represent the insertion of
b;j and a; in front of a gap in the other sequence. These arrows are “weighted”
with the corresponding scores, given by the chosen scoring system.

The initial conditions (i and/or j = 0) of this recursion are easy to cal-
culate:

e if 7 and j are both equal to 0, the score is 0 (nothing has been aligned);
e ifi=0and j#0,

score opt (bi---b) = score opt_ (by b1) + score (b;)

o ifi£0etj=0,

score opt T = score opt S +score |
—\ a1---0a4 N\ 0101 a;

(8)

Calculating the optimal alignment between two sequences may then be
represented as the search for the optimal path in a graph: horizontal arrows
correspond to the insertion of gaps in the sequence represented vertically,
vertical arrows correspond to insertion of gaps in the horizontal sequence,
and diagonals arrows correspond to the pairing of residues, one from each
sequence. An example of such a graph is given on figure 2, which represents
the alignments between sequences ACAC A and ACCACC (reproduced with
permission from [4]). The path that is emphasized models the alignment

A - C A - C A
A CC ACC -~

The goal is then to find the best path in such a weighted graph, each
edge carrying the cost of its corresponding elementary editing operation.
These costs, scores, or weights, are given by the choosen scoring system.
The alignment is then built, step by step, representing it as a path in a table
of dimensions m + 1 and n + 1, with the A sequence represented vertically
from top to bottom, and the sequence B, horizontally from left to right.

e For all values of 7 and j, respectively between 0 and m and between 0
and n, the cell of indices ¢ and j in the table contains the score of the
optimal alignment of aq - --a; with by -+ - b;.

e The cell (0,0) contains the value 0 (nothing has been aligned). This is
the start point of the alignment.

e The first row (¢ = 0) and the first column (j = 0) are easily filled in,
since only one way is possible for reaching one of these cells (equations
7 and 8).

B i it
A
SN A
T
PN HAN AN HAN B

Figure 2: Graph representing all the possible alignments between sequences
ACACA and ACCACC. Edges are labelled with the elementary operations,
substitutions, deletions and insertions, that they represent.

e For i and j both greater than 0, the value in the cell of indices ¢ and j is
calculated from those of the three cells immediately on the left (optimal
score of the alignment of a; - - - a; with by - - - b;_1), above (optimal score
of the alignment of aj---a;—; with by ---b;), and above on the left
(optimal score of the alignment of a; - - - @;—1 with by ---bj_1), from the
formula given in equation 6. This is illustrated on figure 1.

e The cell of indices m and n will contain the score of the optimal align-
ment between A and B.

e In order to build the corresponding alignment, one must have memo-
rized, at each step, the path that has been chosen: a horizontal arrow
means that one was coming from the cell on the left, and thus that one
has introduced a gap in the vertical sequence; conversely if one comes
from the cell just above; and if one comes from the cell that is above
and on the left, a diagonal arrow will mean that one has paired the
residues of respective indexes ¢ and j in the sequences A and B.

An example of a scores and path table is shown in figure 3, of the same
sequences as in figure 2.

t=>1—t=2—1=3—1=4—1>5—"1>6

>] —t=2—1=3—1=4

f=2—1=3

NS R
|

>
AT AS T WS NSRS o
AT WS NS RS o

o<t =<t <o
|

Figure 3: Scores table from the calculation of the best alignment between
ACACA and ACCACC. The scoring system is the one of equation 4.
Among the edges that have been kept during the computation, one can
find two paths allowing to go backward from the rightmost cell on the last
row (end of the alignment) to the leftmost cell on the first row (startpoint
of the alignment). These two paths represent the two optimal alignments
(they get the same score of 2) between the two sequences, under the scoring
system that has been choosen.

Comments:

When one calculates the optimal score of any sub-alignment, one has to
calculate the minimum between three integers. The computer cannot
do that directly, and the operation has to be done in several steps, e.g.:

minimum of a, b and ¢: one first compares a and b then,

— if @ < b, then one compares a and ¢, and if a < ¢, the
result is a, else it is ¢ ;

— else (if @ > b), one compares b and ¢, and if b < ¢, the
result b, else it is c.

In the case where a and b are equal, with the above algorithm, the
result will always be a, never b, just because of the order with which
the comparisons are made. This situation may arise when filling in the
table, and corresponds to different alignments with identical scores.

If A" and B’ are sub-sequences from A and B such that A’ corresponds
to the ¢ first residues of A, and B’ corresponds to the j first residues
of B, and if A is an optimal alignment of A and B, and A’ is an

10

optimal alignment of A’ and B’, A’ is not necessarily included in A
(the path representing.A in the table, does not necessarily include the
cell of indexes (3, j)).

This method is known as the algorithm of Needleman and Wunsch, or
sometimes Needleman-Wunsch-Sellers ([5], [6],[7]). The class of methods it
belongs to, is called Dynamic Programming. Dynamic Programming may
be applied to a wide range of problems, which fit the following criteria:
the solution of a sub-problem may be derived from the solution of a sub-
problem immediately preceeding it. One may notice that this method does
not require the examination of all the possible alignments between the two
sequences. The alignments whose scores are indicated in the table are only a
very small fraction of the whole. Indeed, because of the optimality criterion,
the algorithm guarantees that at each step of the calculation, one can find
the optimal alignment from one of its three immediate sub-alignments, and
therefore at each step, two thirds of the possible alignments are eliminated.
For these reasons, this method is said to be ezact (it is guaranteed to find
the optimal solution), even if it is not ezhaustive (it does not explore the
whole space of possible alignments).

1.2.2 Local alignments

With the method described in the preceeding section, we align the sequences
along their entire lengths, the alignment taking into account all the residues
of each sequence. What we obtain is thus a global alignment of the sequences.
With biological molecules, it may sometimes be more relevant to search the
best local alignment of the two sequences.

There exist several slight modifications of the Needleman-Wunsch-Sellers
algorithm. For example it is possible not to penalize the gaps when they
are at one extremity of one of the sequences. These modifications make it
possible to compute the best alignment corresponding to the inclusion of one
sequence into the other, or the best overlap between the two sequences.

What is more difficult is if one wants to get the best alignment between
a sub-sequence of A and a sub-sequence of B, given that the start and end
positions of these sub-sequences are not a priori known: the start and end
positions of the alignment in both sequences are yet part of the problem that
we have to solve. An algorithm for solving this problem has been developed
by Smith and Waterman (and is called the Smith-Waterman algorithm) in
1981 ([8]). This algorithm is derived from the Needleman-Wunsch-Sellers
algorithm, and uses the same principle:

11

e The computation of the optimal alignment is done by Dynamic Pro-
gramming, by filling in a table of scores and another table for keeping
in memory the choosen paths (or computing the paths afterwards, from
the scores table, using a backtracking algorithm).

e In case of the local alignment problem, it becomes necessary to reason
in terms of similarity instead of distance, and moreover there are some
requirements about the scoring system that is to be chosen. Indeed,
for determining the start and end positions of the alignment, we need
the score to be able to vary in both ways: we want to begin the align-
ment where the similarity becomes to increase and we want to stop
it when the similarity decreases. It means that we need the score to
increase with the similarity and to decrease as soon as the sequences
become to be no more similar (and we do not want the score to increase
systematically with the length of the alignment). Thus, we choose a
scoring system such that all that is considered as “good” (identities,
and pairing between similar letters) gets a positive score, and all the
other operations (gaps, and pairing between not similar amino acids)
get negative scores.

More formally, we need a system in which an alignment taken ran-
domly receives a negative score, in order to guarantee that alignments
scores will not tend to increase just with length. For ungapped local
alignments, it has been proven [9] that the scoring system must fulfill
these two requirements:

> fifiSi; <0 9)
1,J
and, there exists at least one pair 4, j, such that S;; > 0, % and j
being taken from the sequences alphabet.

For alignments with gaps, there is no theory about the alignments
scores and scoring systems have to be empirically validated.

e With the correct scoring system, we now just need to fill in the table of
scores, applying the same principles as for the global alignments, but
with one important difference: while the score is below 0, we just place
0 in the cell. Each cell containing a 0 is a potential alignment start
point. Once the table is filled in, one has to locate in the table the cell
containing the highest score. It corresponds to the end point of the
best local alignment. Then, one has just to backtrack the path (as we

12

do in the case of global alignment), until reaching a cell containing a
0, which will indicate the start point of the optimal local alignment.

There exist many variations from this algorithm, allowing for example to
get also sub-optimal local alignments ([2] and [10]).

Conclusions

Dynamic programming methods for both global or local alignments guaran-
tees at least one optimal solution to the problem that is formulated. This
guarantee of optimality and correctness has a cost in terms of time and
computation space that are required:

e The time required for performing the computation is a function of the
number of elementary operations that have to be performed. Here, we
need to fill in a table of dimensions m 4+ 1 and n + 1. Each cell cor-
responds to one elementary computing operation. Thus, the required
time will be roughly proportional to the product of the lengths of the
two sequences.

e If one wants not only to calculate the score of the alignment, but also to
be able to build the alignment, one has also to keep in the computer’s
memory the path that is being chosen, until the table is completely
filled in. It means that the memory space that is required to make the
program run will also grow with the product of the lengths of the two
sequences.

There exist some improvements of the basic algoritms, allowing to save
time and space. These two issues become really a problem when one wants to
extend these algorithmss to bigger or more complex problems like comparing
one sequence against a whole database of sequences, or simultaneously align-
ing multiple sequences. One should notice that in the case of the comparison
of a sequence against a whole database, the size of the problem, even if “big”,
grows only linearly with the size of the database. In the case of the exten-
sion to the multiple alignment problem, the size of the problem increases
exponentially with the number of sequences, and becomes intractable with
pure dynamic programming methods as soon as the number of sequences
becomes greater than six or seven sequences. For these reasons, for both of
these problems, heuristic (meaning they don’t guarantee to find the “opti-
mal” result) methods have been developed. These methods are explained in
the corresponding chapters.

13

2 Scoring systems

In the preceeding sections, we focused on computational methods that com-
pare sequences, given a set of parameters, and particularly that find the
best global or local alignment between these sequences. We temporarily left
aside the fact that the sequences of interest are those of biological molecules
and that the similarity that we want to estimate may be interpreted from
a biological point of view. In order to give the alignments some biological
meaning, we need scoring systems that attempt to be “biologically relevant”.

When the character strings being compared represent nucleic acids or
proteins, an elementary operation like the pairing between two residues or
the introduction of a gap at one position of a sequence, must be interpreted
in the context in which the comparison is being performed: if one compares
two sequences with the underlying idea that they may have evolved from a
common ancestor, we would like the score of the pairing between two residues
to be related to what we know about the evolution of biological sequences,
and for instance reflecting the probability of the observed substitution. Sim-
ilarly, if one wants to interpret the similarity between two protein sequences
in terms of strutural properties, we would like the scores to reflect structural
similarities.

This section will address the question of how to estimate the similarity
between two amino acids, and how to score gaps in biological alignments.
One has to remember that there may be different answers to these questions
depending on the biological context in which we perform the sequence com-
parison. The elementary scores are parameters of the sequence comparison
programs, and even if there are default values that come with the programs,
they may be changed by the users.

2.1 Scoring matrices for amino acids

The similarity scores between amino acids are usually symmetrical (i.e. s;; =
s;,i), and are proposed into symmetrical matrices of dimension 20.

The notion of similarity between amino acids refers implicitly to the -
biological - point of view from which one considers that two amino acids
look more or less like each other. For example, the similarity scores will not
be the same if one considers specifically some physical or chemical properties,
or if one is interested in the propensity of two amino acids to be exchanged
while keeping the structural or functional properties of the sequence, etc.

One may distinguish two classes of approaches that have been used to
set these similarity scores:

14

e those considering precisely some particular features (for example chem-
ical properties) of the amino acids, and setting similarity scores directly
from these features.

e those that consist in observing in real biological molecules how the
amino acids are indeed exchanged, and deriving from these observa-
tions a set of probabilities of substitutions, which are then converted
into similarity scores.

2.1.1 Direct methods

This approach relies on the direct comparison of amino acids and consists in
defining similarity values for all the possible pairs.

A first obvious example of this approach leads to the “identity matrix™:
each diagonal cell contains the value 1 (or any other positive value), and non
diagonal elements are all set to 0.

If one wants to choose a biochemical point of view, one has to try quan-
tifying the similarities according to some physical and chemical properties.
This has been done by Grantham in 1974 (|11]), who considered the atomic
composition, polarity, and volume of the side chains of amino acids, and, dif-
ferently by Miyata in 1979 ([12]). In 1987, Rao ([13]) considered properties
such that hydrophobicity and propensity to form some secondary structures.

There have also been some attempts to adopt a strict genetic point of
view: in 1966, Fitch has derived scores from the minimum number of muta-
tions at the level of DNA that were required to observe a substitution at the
level of amino acids ([14], [15]).

The biochemical and genetic points of view may also be considered to-
gether, which has been done by Feng and Doolittle in 1985 ([16]).

The first problem of the biochemical and/or genetic approaches is that
they consider only a subset of the biological properties that may be involved
when one compares amino acids, and relies only on some intuitive notions of
biochemical or genetic similarities.

Finally, in 1971, MacLahan instead of focusing on some specific features,
considered the propensity of amino acids to be exchangeable, as may be
observed from an alignment of homologous proteins ([17]). From these ob-
servations, he derived similarity scores ranging from 1 to 9. So, his approach,
conversely from the preceeding ones, did not try to explain the similarity in
terms of biochemical or genetic features, but just took into account the result
of what natural evolution has done.

The second problem, common to all these approaches, is that whatever

15

the criteria used to judge the similarity between amino acids, the different
scores are defined in an arbitrary manner.

2.1.2 Log-odds matrices

For the reasons explained above, the scores resulting from various direct
estimations of the similarities between amino acids have not extensively been
used in sequence comparison, and approaches deriving scores indirectly, from
the estimation of the probabilities of substitutions between amino acid, have
rapidly proven to be more accurate and efficient.

As above, different criteria may be taken into account, but yet the idea
is to start from observed substitutions and to deduce from these observa-
tions the probabilities of specific substitutions. These probabilities, are then
converted into scores. In order to observe these substitutions, one has to con-
sider alignments. If these alignments correspond to structural alignments,
the corresponding scores will reflect structural similarities. If the alignments
one considers are those of homologous proteins, the probabilities will be those
of the substitution from one amino acid to another one, with conservation
of the function.

This later approach is the one that has been used by Margaret Dayhoff
as early as 1968, and others followed in 1972 and 1978 (|18], [19]), and this
is the one that will be explained in more detail in the next section, which
explains the construction of "log-odds scoring matrices".

PAM matrices

The fundamental idea underlying the work of M. Dayhoff’s group was to use
a functional definition of the similarity between amino acids: the similarity
between two amino acids should be reflected in the frequency of observed
substitutions, with conservation of function. These conservative substitutions
are identified after aligning protein sequences that are known (from external
knowledge) to be homologous (which means that they have evolved from a
common ancestor) and to perform the same function.

The methodology used for calculating the matrices was the same in 1968
and 1978, the only difference being the number and nature of the sequences
that were considered. The “PAM” matrices that are proposed with many
programs, and still used, are those that were developed in 1978.

«PAM» is an acronym for “Accepted Point Mutation”; it is the name
given to the matrices described below, and also the name of the unit defined
by the authors for expressing amounts of evolution: an evolutionary time

16

is characterized by the percentage of mutations that occured during that
time. A PAM1 similarity matrix contains similarity scores that one should
apply to sequences that diverge from each other by an amount of evolution
of one PAM, or 1% mutations. Similarly, a PAM250 represents the similar-
ities between amino acids after a period of 250 PAMs. Since two successive
mutations may arise at the same position in the sequences, a period of x
PAMs does not correspond to an amount of 2% of observed substitutions
(see corresponding table).

The construction and the use of these matrices relie on two assumptions
about the evolutionary process followed by the protein sequences:

e the mutational events at one position of a sequence are supposed not
to depend on the context. It means they do not depend neither on the
position itself, nor on the nature of the amino acids surrounding it, nor
on the mutational events at other positions in the sequence.

e the mutational events at one position are supposed to be independent
from the evolutive history at that position

(One may notice that from our current understanding about the evolution
and structure of proteins, both of these hypothesis are generally wrong. But,
taking into account more realistic but complicated models is much more
difficult.)

One may distinguish four steps in the process leading to the final matri-
ces:

1. Collecting raw data:

e The sequences were chosen among different protein families, and
were required (inside a family) to share at least 85% identity, for
two reasons: first, this level of similarity allows to align the se-
quences without the help of a computer program, for there are few
ambiguities and few gaps to introduce; second, if the sequences
are very similar, the amount of evolution supposed to separate
them is considered to be short, and one makes the hypothesis
that multiple changes at the same positions have not occured (a
multiple change would mean that when we observe an exchange
between ¢ and j, the actual story is i« — z — j), so that observing
1 in front of 7 in an alignment is interpreted as a substitution from
i to j or from j to 3.

e The observed substitutions are identified and counted: 4;; = A;;
represents the number of observed substitutions from ¢ to j or

17

from j to ¢. Indeed, when one observes ¢ and j at the same
position in an alignment, one doesn’t know the direction of the
exchange, and one considers that both probabilities are the same.
The matrix A that is obtained is thus symmetrical.

e Frequencies of occurences: n; represents the number of times that
1 occurs in the sequences, from which are derived the relative
frequencies: f; = 3, with N = 37, ny

2. The transition matrix:

From the data contained in the A matrix are derived the probabilities
of mutation that will form the M matrices, also called “transition ma-
trices”. An element M; ; of an M matrix represents the probability of
mutation from j to ¢ during a given amount of evolution that is the
same for all the M;; and is thus a feature of M. The M matrices
are non-symetrical: the intrinsic mutabilities of the amino acids are
taken into account, which means that the probability that ¢ mutates
to j is different from the probability that j mutates to i, because the
probabilities that they mutate at all are different.

e If p,(j — i) is the probability that j mutates in ¢ during an
evolution period of z PAMs, it can be written like:

where p(j — i|j —) is the probability that j mutates in ¢ given
that j mutates (does not depend on z) and pz(j —) is the prob-
ability that j mutates (during the evolution period of z PAMs).
p(j — i|j —) is easily calculated from the data collected at first
step. pg(j —) may be written as Azm; where)\, depends on
z, and mj, called the relative mutability of j is calculated from
the data (equations and details of the calculation are not given
here) and represents the probability for each occurence of j that
it mutates, during an amount of evolution of one PAM.

e Given that both p(j — i|j —) and m; can be calculated from the
observed data, and that A, only depends on z, one may calcu-
late the M, elements of an M* matrix for any value of z. M.
Dayhoff ﬁrst calculated the M! matrix and then obtained the
other ones by successive multiplications: it can easily be demon-
strated that the M*'Y, whose elements are the probabilities of
amino acids mutations during an evolution period of 4y PAMs,

18

is the product of M* by MY. This is true because of the sec-
ond hypothesis (see above), meaning that what happens during
the = period doesn’t depend on what happens during the y pe-
riod: this allows to multiply the probabilities of events occuring
respectively during the z and y periods. That is how it is possi-
ble to derive matrices representing long periods of evolution from
sequence data representing only short evolutionary distances.

3. The relatedness odds matrix:

e Each R;; element of this matrix is such that: R;; = %1, which

may also be written as % M; ; is the probability that j mu-
tates to ¢ per occurence of j,y and thus f; x M; ; is the probability
for observing a mutation of j to 7 in sequences where their respec-
tive relatives frequencies are f; and f;. f; X f; is the probability
of observing j exchanged with ¢ in the same sequences, just by

chance. This ratio is called “odds ratio”.

¢ From the above definitions of M and R, one can show that R; ; ~
R ;, which means that the R matrix is symetrical. So, R; ; is the
probability of observing a substitution from j to ¢ or from 4 to j,
per occurence of ¢ and per occurence of j, or said differently, it is
the ratio of the chances that when we observe ¢ in front of j in
an alignment, it is because one has mutated into the other one,
or just because of their respective probabilities (f;, f;) of being
there.

e When one aligns two protein sequences, the product of the R; ;
for all the aligned (4, j) pairs gives us the ratio of the probability
that the alignment represents the evolution of one sequence into
the other one, to the probability of a chance alignment. Then,
the logarithm of this ratio gives us a score, which is greater than
0 if the probability that this alignment represents the evolution of
one sequence into the other one (of course, it means “during the
amount of z PAMs that the matrix represents”) is greater than the
probability that this alignment is obtained “by chance”, given the
amino acids composition of the sequence (that is approximated
to be the same for all the studied sequences).

4. The log-odds matrix :

Because the different positions of the sequences are considered to be
independent from each other (first hypothesis, see above), we could

19

multiply the R; ; values of all the aligned pairs in order to get an odds
ratio for the whole alignment. This would lead to very small numbers,
that are difficult to work with a computer. Also, in the first section,
we have defined the score of an alignment as the sum of the scores for
each pair of aligned residues. Since the logarithm of a product is equal
to the sum of the logarithms, we just have to take the logarithms of
the R;; values in order to get scores that we can sum:

Sz',j =k log Ri,j

k is just a scaling factor that allows us to work with integers. In the
original Dayhoff’s work, k was equal to 10. The Dayhoff matrices (the
well known “PAM?” series), as well as all those derived by similar ways
are called “log-odds matrices”.

Dayhoff matrices have been criticized (see below) and new “log-odds”
matrices have been developed. They are slightly different, but the general
method, leading to “log-odds scores” has been kept.

The main criticisms were:

e the data set that she used was small (it reflects the number of available
sequences when she did the work), and some substitutions had not been
observed; there was also a bias in the composition of the proteins from
the dataset due to a bias in the available protein families). New PAM
matrices have been developed, using the same methodology but taking
advantage of the much bigger number of available sequences more than
10 years later (]|20], [21]).

e as described above, the hypothesis saying that successive changes are
independent from one another allows us to extrapolate probabilities
of mutations for long periods of evolution from data corresponding to
short periods. This hypothesis has been much criticized and is probably
wrong ([22]). This is one aspect that is different between the PAM and
Blosum matrices. The Blosum matrices are also log-odds matrices that
are widely used (see below).

e the hypothesis saying that events at the different positions do not de-
pend on one another has also been criticized, and there have been some
attempts for developing matrices based on substitution frequencies of
di-amino-acids ([23]).

e M. Dayhoff was considering the whole sequences from the data set,
without distinguishing regions that are very strongly conserved from

20

regions that are subjected to little or no selection pressure (regions that
are less important with respect to the structure and function of the
protein). Taking these regions into account introduces “background”
in the counts for observed changes, if we want these changes to be
“accepted” changes that reflect functional similarities between amino
acids. Some matrices based on alignments of conserved “blocks”, that
do not contain gaps, have be developed. They are the series of the
Blosum matrices ([24]). Their second difference when compared with
Dayhoff matrices is that the scores for a given amount of evolution are
derived directly from the data (no extrapolation by matrix products
like was done by Dayhoff). For example “blosum62” means that the
sequences used for deriving it shared at least 62% of identity.

Conclusion

e the log-odds matrices have proven to work better in scoring homologous
proteins than those previously developed.

e the closer the amount of evolution represented by the matrix to the
actual distance between the sequences being compared, the better
the scores will discriminate “biologically meaningful” alignments from
“chance” alignments ([25]). Of course, before aligning two sequences,
one doesn’t know their evolutionary distance. That’s why it is often
advised, particularly in the context of a database search, to use several
different matrices corresponding to different amounts of evolution.

e some empirical evaluations of the different matrices have been done
([16], [26], [27], [28])). The results vary depending on the evaluation
criteria, but it seems that on average the blosum50 and blosum62, as
well as the “new PAMs” (like “pet91”, [20], and the “Gonnet series”,
[21])) give the best results.

2.2 Gap penalties

The first algorithms and scoring systems that have been developed for bio-
logical sequence comparisons were scoring gaps with a fixed penalty for each
residue aligned with a gap (as in section 1.2.1). The result is that the penalty
for a gap is proportional to its length, which also means that we consider one
gap of length k as being the same thing as k independent gaps of length 1.
This appears to lead to alignments that contain many short insertions and

21

deletions, which is not what is observed when considering proteins of known
structure ([29]).

In a biological context, we may expect gap penalties to reflect our biolog-
ical interpretation of their occurence. If one interprets gaps into alignments
as insertion and deletion events occuring at the level of DNA during evolu-
tion, we would like to distinguish two penalties: one for the existence of a
gap, and another one depending on its length.

Thus, modifications of the algorithms, allowing to define a gap penalty
of the form a + b x k, k being the length of the gap, and where a is often
called “the gap creation penalty”, and b, “the gap extension penalty” have
been developped.

There is no theory allowing the calculation of the probability of a gap (as
a function of the evolutionary distance and/or its length for example) and
to derive a score for the alignment of a gap with k£ residues. Particularly,
there is no theoretical background justifying to use an affine function for
scoring gaps. Moreover, there exist some studies about the distribution of
gaps in proteins as a function of their length that indicate that penalties of
the form a+bxlog k would probably better fit biological observations and be
more relevant ([30]). Algorithms using this kind of gap penalties have been
developed ([31]), but probably because they are more difficult to implement,
they are not currently used, and most programs propose affine gap penalties.

It has recently been proposed to model the gaps in a way that avoids
aligning regions of low similarity, in order to prevent the introduction of
artificial gaps inside them ([32]). Indeed, this means considering the align-
ment as a succession of ungapped blocks of similarity separated by unaligned
regions of low similarity. These regions are considered to contain unpaired
residues and pairs of residues that are left unaligned. One such region, in-
volving k; residues in one sequence and ko residues in the other one (k1 > k»),
is penalized with a negative weight equal to a + b(k1 — k2) + cko (ko is the
number of residues that are unpaired and k; — ko is the number of pairs of
residues that are unaligned). This gap scoring scheme is called "generalized
affine gap costs".

There exist also some variations on gaps weighting that have been im-
plemented, like the one proposed in the Calign program ([33]): the gaps in
the shorter sequence that are longer than [(a user-specified parameter) are
penalized with a fixed cost. It enables one to get very long gaps in one of
the sequences, separating similar regions, a situation that may arise when
aligning genomic DNA with corresponding coding (spliced) sequences. It
amounts to consider two different kinds of gaps in the alignment: those that
are required for correctly align related segments in the two sequences, and

22

those that correspond to introns in the genomic sequence.

2.3 Similarity scores between nucleotides

Most of the time the similarity scores between nucleotides distinguish only
between matches and mismatches. Their relative scores may reflect a PAM
distance as described above ([34]). In some cases (mostly for phylogenetic
analyses), there exist scoring systems for nucleotides that take into account
the fact that transitions are supposed to occur more frequently than transver-
sions, and even other more sophisticated evolutionary models of nucleic acids.

References

[1] Adrian J. Gibbs and George A. McIntyre. The diagram, a method for
comparing sequences. its use with amino acid and nucleotide sequences.
Eur. J. Biochem., 16:1-11, 1970.

[2] Michael S. Waterman. Introduction to computational biology - Maps,
sequences and genomes. Chapman & Hall, 1995.

[3] Dan Gusfield. Algorithms on strings, trees, and sequences - Computer
science and computational biology. Cambridge University Press, 1997.

[4] manuscript in preparation, personal communication.

[5] Saul B. Needleman and Christian D. Wusnch. A general method ap-
plicable to the search for similarities in the amino acid sequence of two
proteins. J. Mol. Biol., 48:443-453, 1970.

[6] Peter H. Sellers. On the theory and computation of evolutionary dis-
tances. SIAM J. Appl. Math., 26(4):787-793, 1974.

[7] Temple F. Smith, Michael S. Waterman, and Walter M. Fitch. Com-
parative biosequence metrics. J. Mol. Evol., 18:38-46, 1981.

[8] Temple F. Smith and Michael S. Waterman. Identification of common
molecular subsequences. J. Mol. Biol., 147:195-197, 1981.

[9] Stephen F. Altschul. Amino acid substitution matrices from an infor-
mation theoretic perspective. J. Mol. Biol., 219:555-565, 1991.

[10] http://www-hto.usc.edu/software/seqaln/.

23

[11]

[12]

[13]

[14]

[15]

[16]

[21]

[22]

R. Grantham. Amino acid difference formula to help explain protein
evolution. Science, 185:862-864, 1974.

T. Miyata, S. Miyasawa, and T. Yasunaga. Two types of amino acid
substitutions in protein evolution. J. Mol. Evol., 12:219-236, 1979.

J. K. M. Rao. New scoring matrix for amino acid residue exchanges
based on residue characteristic physical parameters. Int. J. Pept. Pro-
tein Res., 29:276-281, 1987.

W. M. Fitch. An improved method of testing for evolutionary homology.
J. Mol. Biol., 16:9-16, 1966.

W. M. Fitch. Construction of phylogenetic trees. Science, 15:299-304,
1967.

D. F. Feng, M. S. Johnson, and R. F. Doolittle. Aligning amino acids se-
quences: comparison of commonly used methods. J. Mol. Evol., 21:112—
125, 1985.

A.D. McLachlan. Tests for comparing related amino-acid sequences.
cytochrome ¢ and cytochrome ¢551. J. Mol. Biol., 61:409-421, 1971.

M.O. Dayhoff and R.V. Eck. A model of evolutionary change in pro-
teins. In Natl. Biomed. Res. Fnd., editor, Atlas of Protein Sequence and
Structure, chapter 4, pages 33-41. Silver Spring MD, 1967-68.

M.O. Dayhoff and R.V. Eck. Matrices for detecting distant relation-
ships. In Natl. Biomed. Res. Fnd., editor, Atlas of Protein Sequence
and Structure, chapter 23, pages 353-358. Silver Spring MD, 1978.

David T. Jones, William R. taylor, and Janet M. Thornton. The rapid
generation of mutation data matrices from protein sequences. CABIOS,
8(3):275-282, 1992.

Steven A. Benner, Mark A. Cohen, and Gaston H. Gonnet. Exhaustive
matching of the entire protein sequence database. Science, 256:1443—
1445, 1992.

Steven A. Benner, Mark A. Cohen, and Gaston H. Gonnet. Amino
acid substitution during functionally constraint divergent evolution of
proteins. Protein Eng., 7(11):1323-1332, 1994.

24

[23]

[27]

28]

[31]

[32]

[33]

[34]

Gaston H. Gonnet, Steven A. benner, and Mark A. Cohen. Analy-
sis of amino acid substituion during divergent evolution: the 400 by

400 dipeptide substitution matrix. Biochem. and Biophys. Res. Com.,
199(2):489-496, 1994.

Steven Henikoff and Jorja G. Henikoff. Amino acid substitution matrices
from protein blocks. Proc. Natl. Acad. Sci. USA, 89:10915-10919, 1992.

Stephen F. Altschul. A protein alignment scoring system sensitive at
all evolutionary distances. J. Mol. Evol., 36:290-300, 1993.

Steven Henikoff and Jorja G. Henikoff. Performance evaluation of amino
acid matrices. Proteins: Structure, Function and Genetics, 17:49-61,
1993.

Gerhard Vogt, Thure Etzold, and Patrick Argos. An assessment of
amino acid exchange matrices in aligning protein sequences: the twilight
zone revisited. J. Mol. Biol., 249:816-831, 1995.

Mark S. Johnson and John P. Overington. A structural basis for se-

quence comparisons: an evaluation of scoring methodologies. J. Mol.
Biol., 233:716-738, 1993.

Stefano Pascarella and Patrick Argos. Analysis of insertions/deletions
in protein structures. J. Mol. Biol., 224:461-471, 1992.

Steven A. Benner, Mark A. Cohen, and Gaston H. Gonnet. Empiri-
cal and structural models for insertions and deletions in the divergent
evolution of proteins. J. Mol. Biol., 229:1065-1082, 1993.

Webb Miller and Eugene W. Myers. Sequence comparison with concave
weighting functions. Bull. Math. Biol., 50(2):97-120, 1988.

Stephen F. Altschul. Generalized affine gap costs for protein sequence
alignment. Proteins: Structure, Function and Genetics, 32:88-96, 1998.

Kun-Mao Chao. Calign: aligning sequences with restricted affine gap
penalties. Bioinformatics, 15(4):298-304, 1999.

David J. States, Warren Gish, and Stephen Altschul. Improved sensi-
tivity of nucleic acid database searches using application specific scoring

matrices. Methods: a companion to Methods in Enzymology, 3(1):66-70,
1991.

25

