
Part 2:

Similarity searching in sequence databases

1

(structural, functional, evolutionary features)

Nucleotide Sequence Databases

The EMBL/GenBank/DDBJ international Nucleotide Sequence Database

> Exhaustive Redundant Not curated Heterogenous

Many specialized (organism specific) databases

Curated and annotated by experts of the organism

See Nucleic Acids Research, 1st of January, each year, and journals like Bioinformatics or Genome Research.

Protein Sequence Databases

Curated and Annotated Protein Resources

PIR

SwissProt

Translations of Nucleotide Databases

Genpept

TrEMBL : supplement to SwissProt

sptrnrdb, "SwissProt, TREMBL, Non Redundant DataBase"
= SwissProt + TrEMBL + TrEMBL_new

Composite Databases

NCBI-nrprot

OWL

Heuristic algorithms

They prune the search space by:

1: using fast approximate methods to select the sequences of the database that are likely to be similar to the query and to locate the similarity region inside them.

2: restricting the alignment process:

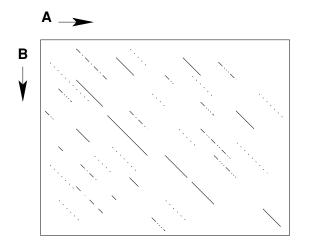
- only to the selected sequences
- only to some portions of the sequences

FASTA & BLAST story

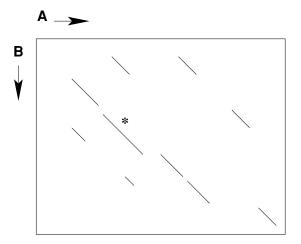
1985 : FASTP (D. Lipman and W. Pearson) Global gapped alignments

1988 : FASTA (W. Pearson and D. Lipman) Local gapped alignments

1990 : BLAST1

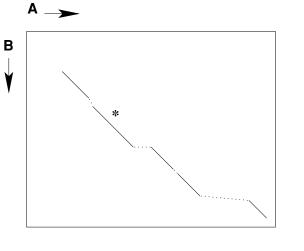

(S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman) Local ungapped alignments

Gapped BLASTs :

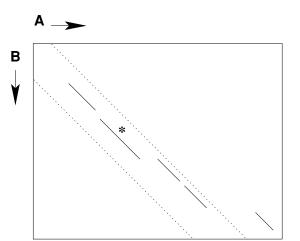

1996: WU–BLAST2 (W. Gish)

1997: NCBI–BLAST2 (and PSI–BLAST) (S. Altschul, T. Madden, A. Schaffer, J. Zhang, Z. Zhang, W. Miller and D. Lipman)

FASTA ALGORITHM



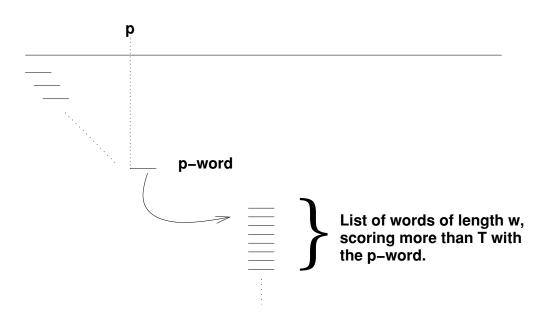
Identify all k-tuple matches


score the 10 best scoring regions using a scoring matrix

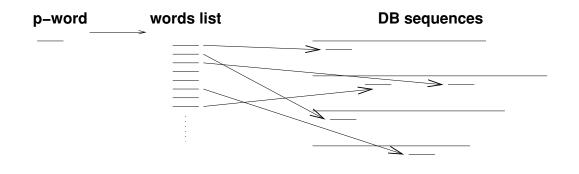
Init1 score

Apply joining procedure

→ Initn score

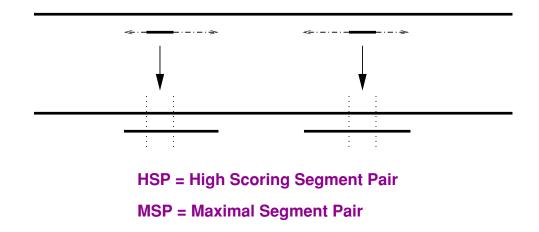


BLAST1 ALGORITHM


First step:

For each position p of the query, find the list or words of length w scoring more than T when paired with the word starting at p:

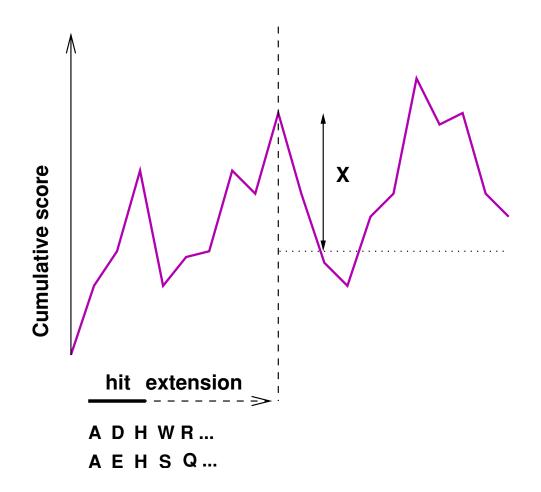
Second step:


For each words list, identify all exact matches with DB sequences:

BLAST1 ALGORITHM

Third step:

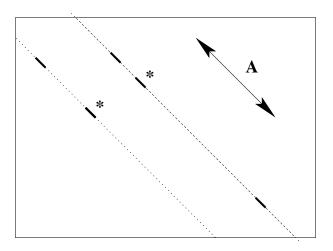
For each word match («hit»), extend ungapped alignment in both directions. Stop when S decreases by more than X from the highest value reached by S.



Reports all HSPs having score S above a threshold, or equivalently, having E-value below a threshold.

E-value = the number of HSPs having score S (or higher) expected to occur only by chance.

Apply sum-statistics to evaluate the significance of a combination of HSPs involving the same DB sequence.


NCBI-BLAST2

The «two-hits» requirement

First step: as with BLAST1, generate lists of words scoring more than T with words of the query.

Second step: generation of hits: identify all word matches in DB sequences

Third step: extension of hits: requires a second hit on the same diagonal at a distance of less than A.

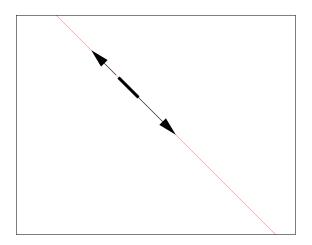
This step generates ungapped HSPs

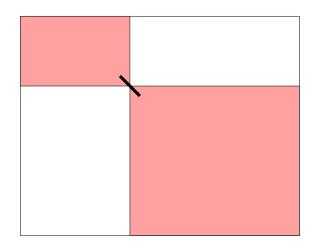
Fourth step: gapped extension of HSPs having score above a threshold S_g

First step: as with BLAST1, generate lists of words scoring more than T with words of the query.

Second step: generation of hits: identify all words matches with the DB sequences

Third step: ungapped extension of hits :

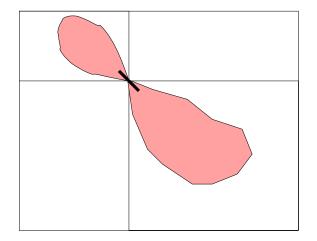

- . default's behavior: «one-hit» requirement (as BLAST1)
- . «hitdist» option: «two-hits» requirement (as ncbi-BLAST2)


Fourth step: HSPs with score S above a threshold trigger gapped extensions

«nogap» option: fourth step is not performed

Evaluates the statistical signifance of multiple local alignments using «Sum statistics»

Ungapped and gapped extensions



Ungapped extension

Gapped extension by full DP

Gapped extension by «banded DP»

Gapped extension by «score-limited DP»

Statistics of alignments scores

Question: Was is the probability of chance occurence of an alignment having score S or greater?

→ We need to know the random distribution of the scores,

i.e. the distribution of alignment scores under a random model

Global alignments:

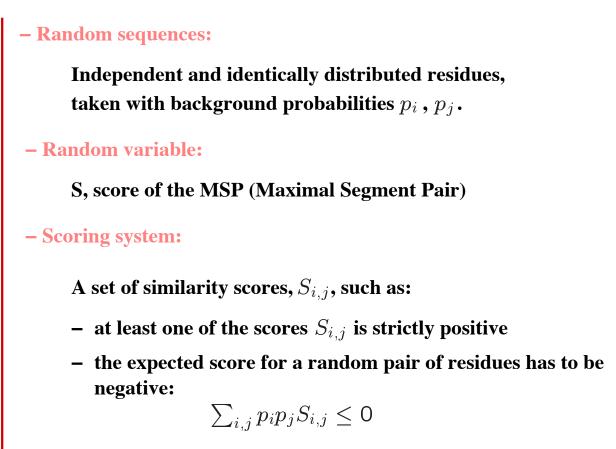
the distribution is not known

Local alignments without gaps:

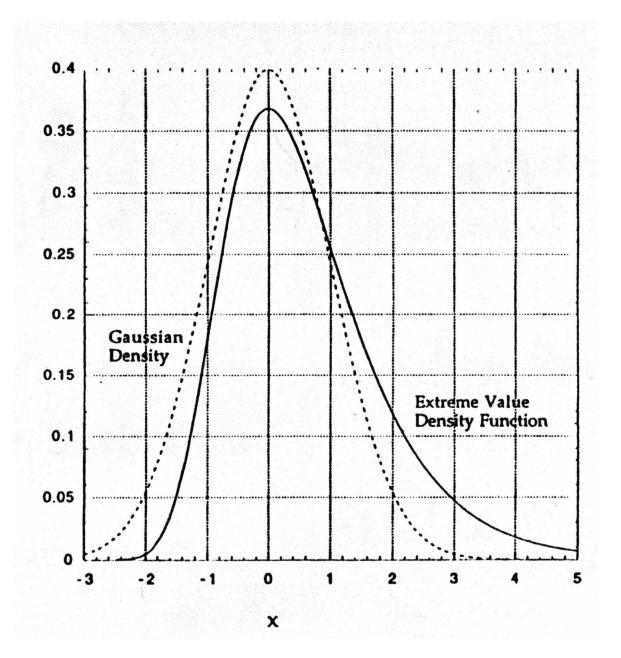
theoretical work: Karlin-Altschul statistics

-> Extreme-value distribution

Local alignments with gaps:


empirical studies

-> Extreme-value distribution


Karlin–Altschul statistics

\longrightarrow Apply to local ungapped alignments

Random Model:

Under this random model and given that the lengths of the two sequences being compared are large, **S follows an Extreme–Value distribution.**

(from W. Gish, 1996)

16

searching /local/databases/fasta/sptrnrdb library

< 20	opt) 994	E() 0:=	
22			one = represents 1377 library sequences
24			one - represents 1377 fibrary sequences
26			
28			
30		1129:*==	
32			
		4364:===*= 11834:=======*=	
		24303:========	
			*
			*
			*

			·····
			*-
			*
			======*
			*
			===============*
		28042:======	
		22482:======	
		17879:======	
		14131:=======	*
		11116:====== *	
70	6784	8711:===== *	
72	2 5428	6807:===*	
74		5307:===*	
76	5 3000	4130:==*	
78	3 2308	3211:==*	
80	0 1702	2493:=*	
82	2 1376	1907:=*	
84	977	1511:=*	
86	5 631	1169:*	
88	516	904:*	inset = represents 7 library sequences
90	400	700:*	
92	2 311	541:*	:
94	208	419:*	:
96	5 184	324:*	: *
98	3 141	251:*	: *
100	88	194:*	:========== *
102	2 95	150:*	:=========== *
104	£ 60	116:*	:======= *
106	5 45	90:*	:====== *
108	3 31	70:*	:===== *
110) 31	54:*	:===== *
112	2 27	42:*	:==== *
114	16	32:*	:=== *
116	57	25:*	:= *
118	3 2	19:*	:= *
>120) 112	15:*	:==*===================================
2576	66599	residues in 81941	14 sequences
statistics extrapolated from 60000 to 819137 sequences			

*

===

Karlin–Altschul statistics

p-value: probability that there is at least one random MSP having score S or greater.

$$p(score \ge S) = 1 - exp(-Kmne^{-\lambda S})$$

E-value: expected number of random MSP having score S or greater.

$$E(S) = Kmne^{-\lambda S}$$

Analytical formulas are available, enabling to calculate λ and K from the parameters of the random model (i.e. background probabilities, similarity scores, lengths of the sequences)

Normalized scores: $S' = \lambda S - \ln K$

Bit scores: $S' = \frac{\lambda S - \ln K}{\ln 2}$ $E(S') = mn2^{-S'}$

18

Statistics of local gapped alignments

Empirically shown that they follow an extreme-value distribution.

Need of empirical simulations of the random distribution in order to calculate its parameters.

Blast2 (both of them):

artificial random sequences

Fasta:

uses results from the search: real unrelated sequences