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Markov Chain Models

A Markov Chain Model is a succession of states .5} (Z =0, 1, ) connected by
transitions. Transitions from state 9; to state Sj has a probability of Pz-j.

An example of Markov Chain Model:

e Transition probabilities:

> P(A|G) = 0.18, P(C|G) = 0.38, P(G|G) = 0.32, P(T|G) = 0.12
> P(A|C) = 0.15, P(C|C) = 0.35, P(G|C) = 0.34, P(T|C) = 0.15

Start
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Markov Chain Models

Given a sequence I of length L, we can ask how probable the sequence is given a
Markov Chain Model:

P(x) = (P(xp),P(xr_1),..., P(x1)) =

P(xp|lxp—1,..-,x1)P(xr_1|lrr_9, ..., 21)...P(21)

Key property of a Markov Chain (of order 1):
P(xi|xi—1, Ti—g, ..., x1) = P(wi|lzi—1).

Therefore:

P(ﬂf) = P(xL’I‘L_l)P(QZ'L_l‘CUL_Q)...P(CUl) =

P(21) T1i Pxilzio1)
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What all this stuff means?

Given a Markov Chain Model M where all transition probabilities are known:

Start

The probability of sequence x = GC'CT' is:

P(GCCT) = P(T|C)P(C|C)P(C|G)P(G)
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Hidden Markov Models

Hidden Markov Models (HMMs) are like Markov Chain Models: a finite number of
states connected between them by transitions.

But the major difference between the two is that the states of the Hidden Markov
Models are not a symbol but a distribution of symbols. Each state can emit a
symbol with a probability given by the distribution.
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Hidden Markov Model
Example of a simple Hidden Markov Model:

A 0.12 A 0. 25
C O 34 C O 25 n 1 ~1 L
G 0. 38 G 0. 25 Visible
T 0.16 T 0. 25

End "Hidden"

START 1 1 1 1 2 2 1 1 1 2 END
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Hidden Markov Models

The parameters of the HMMs:

e Emission probabilities. This is the probability of emitting a symbol « from an alphabet «
being in state q.

E(x|q)
e Transition probabilities. This is the probability of a transition from to a state r being in
state q.
T(r|q)
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Parameter estimation

How we can determine the parameters (emission and transition probabilities) of our
model?

To estimate the parameters we use Maximum Likelihood Estimation.

Estimation of the probability of observing one symbol from an alphabet « (in our
case a = {A,C, G, T}):

e Given a set of sequences:

gcegegcttg
gcttggtggce
tggccgttgce
e the maximum likelihood estimates are:
P(A) =2 =0 P(G) =32 =0.433

P(C) =+ =0.3 P(T) =+ = 0.267
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Parameters estimation

To avoid to set probabilities to 0 we can use different methods:

e For example add pseudo-counts:

P(A)=91=0,029 P(G)=1+=0.412

P(C) =281 =0.294 P(T) =2t =0.265

A general form for priors estimation:

PA) =&y

where M is the number of virtual instances (pseudo-counts) and P4 is the prior

probability of A.
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Parameters estimation

Transition probabilities estimation between the symbols of the alphabet o (for
example a = {A,C, G, T}):

e Transition probabilities are estimated for each observed couple of symbols:
Ny

Pij — 5~
Zj/ nij/

e where p;; is the probability of transition from symbol ¢ to symbol j, and n;; is the number
of transition from symbol ¢ to symbol 7 observed.

e Is possible to add pseudo-counts as described previously.

For example for transition A — G:

e Count all transitions A — A, A — C, A — G, A — T in CpG sequences and non-CpG
sequences.

e Transition probability is then calculated:

_ nag
baG naat+tnactnagt+nar
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Distinguish CpG islands from other sequences regions.

e Two models are required:

> a model to represent CpG islands

> a null model to represent the other regions

A sequences X is scored for being a CpG island:

Parameters for the CpG island and null models:

score(x) = log

An example

P(z|CpGmodel)

P(x|nullmodel)

G A C G T Nul A C G T
A 018 027 043 012 A 018 027 043 012
C 017 037 027 019 C 017 037 027 0.19
G 016 034 038 012 G 016 034 038 0.12
T 008 036 038 018 T 008 036 038 0.18

10
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HMMs algorithms

Three important questions can be answered by three algorithms.

How likely is a given sequences under a given model? This is the
scoring problem and it can be solved using the Forward algorithm.

What is the most probable path between states of a model
given a sequence? This is the alignment problem and it is solved by the
Viterbi algorithm.

How can we learn the HMM parameters given a set of
sequences? This is the training problem and is solved using the Forward-
backward algorithm and the Baum-Welch expectation maximiza-
tion.

For details about these algorithms see:
Durbin, Eddy, Mitchison, Krog.

Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids.

Cambridge University Press, 1998.

11
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HMMs and protein domains

HMMSs are very appropriate for modelization of protein domains.

What are protein domains:

e Domains are discrete structural units.
e Defined by structure.

e Domains are functional units.

12
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HMMs and protein domains

Multiple alignments are used as training set for the building of HMMs.
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HMMs and protein domains

14
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HMMs and protein domains

A model based on three types of states is appropriate to modelize biological
sequences:

e match state: Emits a symbol corresponding to a match.
e insert state: Emits a symbol between matches.

e delete state: Non-emitting silent state.

Match=M
Insertion = |
Deletion=D
HWVM
HVM 1 MYHCKI SR. SDSEAI LCS. . . . .. Cl TCSFLVRESETSI CQYTI SVRHCCRVFHYRI NVENTE. . . KMVFI TCEVKFERTLCELVHHH 7€
SEQ 1 WFHKKVEKRTSAEKLLCEYCNVETCCK. . . .. VRESETFPNDYTLSFWRSCRVCHCRI RSTVECCTLKYYLTONLRFERRNMYALT CHY 81
M I_ M I M M I_ M
D

15
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HMMs and protein domains

Simple HMM protein sequence model

State Number 0 | 2 3

Delete States

Insert States

Match States

End

16
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HMMER2

Package developed by Sean Eddy (http://hmmer.wustl.edu/).

HMMER uses the "Plan 7" architecture:

M1

@&/

17
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HMMER2

Sequence collection
(PSI-BLAST, ..)

i

[Multiple Alignment)

A

hmmbuild

v
hmmcalibrate C{ HMM )

[ Protein Database]

h 4

hmmsear ch

» Search output

hmmalign

18
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Generalized profiles

Generalized profiles combine aspects of Position Specific Score Matrices (PSSMs)
and Hidden Markov Models (HMMs).

Generalized profiles are composed of alternating match and insert positions. Scores
are associated with each position.

e The match position gives a residue specific match extension score and a deletion extension
score.

e The insert position gives residue specific insertion scores.

e Scores are also associated to all possible transitions.

There is an equivalence between the structure of generalized profiles and a linear
HMMs.

19
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Generalized profiles

n—-1 N

20
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Pftools

The package has been developed by Philipp Bucher (http://www.isrec.isb-sib.ch /ftp-
server /pftools/).

The package contains:

e pfmake for building a profile starting from multiple alignments.
e pfsearch to search a profile against a protein database.

e pfscan to search a protein against a profile database.

Two tools have been created to translate profiles from and into HMMs:

e htop: HMM to profile.
e ptoh: profile to HMM.

21
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HMM-profiles and Generalized profiles

The emission probabilities of HMM-profiles can be translated into a scoring system

The meaning of the position specific scores in the generalized profiles:
as for the generalized profiles:

22
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HMMs and protein domains

23
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Protein domain databases

A non-exhaustive list of protein domain databases:

e Pfam

> http://www.sanger.ac.uk/Pfam.
> Collection of protein domains and families (3071 entries in Pfam release 6.6).
> Uses HMMs (HMMER?2).

> Good links to structure, taxonomy.
e PROSITE

> http://www.expasy.ch /prosite.

> Collection of motifs, protein domains, and families (1494 entries in Prosite release
16.51).

> Uses generalized profiles (Pftools) and patterns.

> High quality documentation.

24
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Protein domain databases

A non-exhaustive list of protein domain databases (continue):

e Prints

> http://bioinf.man.ac.uk/dbbrowser/PRINTS.
Collection of conserved motifs used to characterize a protein.
Uses fingerprints (conserved motif group).

Very good to describe sub-families.

>
>
>
> Release 32.0 of PRINTS contains 1600 entries, encoding 9800 individual motifs.

e ProDom

> http://prodes.toulouse.inra.fr/prodom/doc/prodom.html.

> Collection of protein motifs obtained automatically using PSI-BLAST.

> Very high throughput ... but no annotation.

> ProDom release 2001.2 contains 101957 families (at least 2 sequences for family).

25
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InterPro

InterPro is an attempt to group a number of protein domain databases:

Pfam
PROSITE
PRINTS
ProDom
SMART
TIGRFAMs

InterPro try to have and maintain a high quality annotation.

Very good accession to examples.

InterPro web site: http://www.ebi.ac.uk/interpro.

A stand alone package (iprscan) and the database are available for UNIX platforms
to run a complete Interpro analysis: ftp://ftp.ebi.ac.uk/pub/databases/interpro.

26



Course 2001 HMMs and Profiles

Interpro

e: InterPro Entry [P

File Edit “iew Go Communicator

_' ) e uznceSeaxch
.o¢ text search
File Edit Yiew Go Communicator
I = S [
— = - - Sequence Search]
L0 text sear|
Ilnteer Entry IPROO0O3G0
Release 4.
Src homology 2 (SH2) domain
Datahase InterPro
[FOROIECES (TEITITE) (D (USRI Sy Accession IPRODO3ED; SHZ (matches 623 proteins)
IPRO00380 Hame Src homalogy 2 (SHE) domain
To view the complete output click here Type Domain 0
; a 108 Dates 08§-0CT-13393 (created)
() | , 16-FEB-2000 (ast madified)
Signatures PRO0401; SHZDOMAIM (336 proteing)
PE50001; 5HZ (375 prateing)
. PEOOOTY; SHZ (482 proteing)
- S B FDO00033: SHZ (501 prateins)
“Phosphoinositide - specific_phosphwlipase C_{(FLCY" SMO025Z; SHe (333 proteing)
i i i 1
U @ intracellular signaling cascade (GO:0007248)
- QOTHIIT t 1 A tract@ The Src homalogy 2 (3HZ) domain is a pratein domain of about 100 amino-acid residues first identified as
“Phosphoinesitide - specific_phospholipese C_(PLCY" "PI3 R a congerved sequence region between the oncoproteing Src and Fps [1]. Similar sequences were later
found in many other intracellular signal-transducing proteins [2]. SH2 domaing function as regulatory
1= - a3 modules of intracellular signalling cascades by interacting with high affinity to
- QUFHUE q phosphotyrosine-containing target peptides in a sequence-specific and strictly
“Phosphoinositide - specific_phospholipase_C_(FLCY" phosphorylation-dependent manner [3, 4, 5, 6]. They are found in a wide variety of protein contexts e.g.,
in association with catalytic domaing of phospholipase Cy (PLCy) and the nonreceptor protein tyrasine
kinases; within structural proteing such as fodrin and tensin; and in a group of small adaptar maolecules, ie
PIGl BOWIN Crk and Mok, In many cases, when an 3HZ domain is present 50 too is an SH3 domain, suggesting that
=|=|=|=|=|=I=|= - their functions are inter-related. The domains are frequently found as repeats in a single protein
T "Bhosphoinositide - specific phospholipase € (BLOY sequence. The structure of the SH2 domain belongs to the alpha+beta class, its overall shape forming a
I Phosphoinositide - specific_phospholipase C_(PLCY" ) f ; :
campact flattened hemisphere. The core structural elements comprise a central hydrophobic anti-parallel
heta-sheet, flanked by 2 short alpha-helices. In the v-src oncogene product SHZ domain, the loop
P1G2 HUMAN hetween strands 2 and 3 provides many of the binding interactions with the phosphate group of its
Ebtei it phosphopeptide ligand, and is hence designated the phosphate binding loop.
more profeins in list_2 “Phosphoinositide - specific_phosphilipase © (PLEY Examples ® PO05S43 FES_F3YST: Feline sarcoma virus Tyrosine-protein kinase transforming protein
® P42673 MATK_HUMAN: Human Megakaryocyte- associated tyrosine-protein kinase
e P03949 ABL1_CAEEL: C. elegans Tyrosine-protein kinase
- h ; ;
- - 5
|§| Document: Done, ® PO5E51 REGT_BOVIMN: Bovine GTPase-activating protein

|

27



